Investigation of sequential and enzymatic extraction of arsenic from drinking water distribution solids using ICP-MS.
نویسندگان
چکیده
A sequential extraction approach was utilized to estimate the distribution of arsenite [As(iii)] and arsenate [As(v)] on iron oxide/hydroxide solids obtained from drinking water distribution systems. The arsenic (As) associated with these solids can be segregated into three operationally defined categories (exchangeable, amorphous and crystalline) according to the sequential extraction literature. The exchangeable As, for the six drinking water solids evaluated, was estimated using 10 mM MgCl(2) and 10 mM NaH(2)PO(4) and represented between 5-34% of the total As available from the solid. The amorphously bound As was estimated using 10 mM (NH(4))(2)C(2)O(4) and represented between 57-124% of the As available from the respective solid. Finally, the crystalline bound As was estimated using titanium citrate and this represented less than 1.5% of the As associated with the solids. A synthetic stomach/intestine extraction approach was also applied to the distribution solids. The stomach fluid was found to extract between 0.5-33.3 microg g(-1) As and 120-2,360 microg g(-1) iron (Fe). The As concentrations in the intestine fluid were between 0.02-0.04 microg g(-1) while the Fe concentration ranged from 0.06-0.7 microg g(-1) for the first six drinking water distribution solids. The elevated Fe levels associated with the stomach fluid were found to produce Fe based precipitates when the intestinal treatment was applied. Preliminary observations indicate that most of the aqueous Fe in the stomach fluid is ferric ion and the observed precipitate produced in the intestine fluid is consistent with the decreased solubility of ferric ion at the pH associated with the intestine.
منابع مشابه
Investigation of arsenic speciation on drinking water treatment media utilizing automated sequential continuous flow extraction with IC-ICP-MS detection.
Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10 mM MgCl2(pH 8), 10 mM NaH2PO4(pH 7) followed by 10 mM (NH4)2C2O4(pH 3). The media were extracted using an on-line automated continuous extraction system which allowed the arsenic in each of the extraction fluids to be speciated on-line using IC-ICP-MS. The 10 mM MgCl2 preferentially ...
متن کاملبررسی میزان آرسنیک در آب شرب: یک مطالعه موردی
Background and Objectives: Conducted studies about arsenic have shown that consumption of water contaminated with arsenic can causes different adverse health effects in consumers. World Health Organization (WHO) has enacted 10µg/L arsenic in drinking water as a guideline value. Regarding some reports about arsenic presence in a village of Hashtrood county and related health effects and also con...
متن کاملArsenic Occurrence in New Hampshire Drinking Water
Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all Ne...
متن کاملUrinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK.
Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As...
متن کاملAccumulation and Release of Trace Inorganic Contaminants from Biofilm Matrices Produced and Challenged Under Drinking Water Distribution System Conditions
Accumulation and Release of Trace Inorganic Contaminants from Biofilm Matrices Developed and Challenged under Drinking Water Distribution System Conditions by William W. Kent, Master of Science Utah State University, 2016 Major Professor: Joan McLean Department: Civil and Environmental Engineering Over the legacy time frames experienced by drinking water distribution systems (DWDS), trace inorg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of environmental monitoring : JEM
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2006